DocsModel Context ProtocolWorking with Agents

Working with AI Agents

Master the art of orchestrating AI agents for complex development tasks. Learn how to configure, coordinate, and optimize multiple agents working together.

Agent Specializations

Code Generator

Specializes in creating production-ready code from natural language requirements.

  • • Multiple language support
  • • Framework awareness
  • • Best practices enforcement
  • • Documentation generation

Code Reviewer

Analyzes code for quality, security, and performance issues with detailed feedback.

  • • Security vulnerability detection
  • • Performance optimization
  • • Code smell identification
  • • Refactoring suggestions

Database Architect

Designs efficient database schemas and optimizes query performance.

  • • Schema design
  • • Index optimization
  • • Migration scripts
  • • Query optimization

DevOps Engineer

Handles deployment, infrastructure, and CI/CD pipeline configuration.

  • • Infrastructure as Code
  • • Container orchestration
  • • Pipeline automation
  • • Monitoring setup

UX Designer

Creates user interfaces and experiences based on best practices and requirements.

  • • Component design
  • • Accessibility compliance
  • • Responsive layouts
  • • Design system creation

Performance Expert

Optimizes application performance and identifies bottlenecks.

  • • Performance profiling
  • • Load testing
  • • Caching strategies
  • • Resource optimization

Single Agent Configuration

Start with a single specialized agent for focused tasks. Configure the agent with specific capabilities, context, and constraints.

single-agent.js
// Single Agent Configuration
import { MCPAgent } from '@mcpcodex/sdk';

const codeGenerator = new MCPAgent({
  name: 'code-generator',
  model: 'claude-3-opus',
  role: 'Generate production-ready code from requirements',
  capabilities: ['code_generation', 'documentation', 'testing'],
  context: {
    language: 'typescript',
    framework: 'react',
    standards: ['eslint', 'prettier'],
    patterns: ['functional-components', 'hooks']
  },
  temperature: 0.3, // Lower for more consistent code
  maxTokens: 8000
});

// Use the agent
const result = await codeGenerator.execute({
  prompt: "Create a user authentication component with email/password",
  requirements: {
    validation: true,
    errorHandling: true,
    accessibility: 'WCAG 2.1 AA',
    responsive: true
  }
});

console.log(result.code);
console.log(result.explanation);
console.log(result.tests);

Multi-Agent Orchestration

Complex projects require multiple agents working together. Orchestrate teams of specialized agents with sophisticated coordination patterns.

Coordination Patterns

Sequential

Agents work in order, each building on the previous agent's output.

Best for: Dependent tasks

Parallel

Multiple agents work simultaneously on independent tasks.

Best for: Speed optimization

Hierarchical

Lead agent coordinates sub-agents, delegating specific tasks.

Best for: Complex projects
multi-agent-workflow.js
// Multi-Agent Orchestration
import { MCPWorkflow } from '@mcpcodex/sdk';

const featureWorkflow = new MCPWorkflow('feature-implementation');

// Define specialized agents
featureWorkflow.addAgent({
  id: 'architect',
  name: 'system-architect',
  model: 'gpt-4',
  role: 'Design system architecture and API contracts',
  tools: ['diagram_generator', 'api_designer', 'database_modeler']
});

featureWorkflow.addAgent({
  id: 'frontend-dev',
  name: 'frontend-developer',
  model: 'claude-3-opus',
  role: 'Implement user interfaces and client-side logic',
  tools: ['component_generator', 'style_system', 'state_manager']
});

featureWorkflow.addAgent({
  id: 'backend-dev',
  name: 'backend-developer',
  model: 'claude-3-opus',
  role: 'Build API endpoints and server-side logic',
  tools: ['api_generator', 'database_query', 'auth_system']
});

featureWorkflow.addAgent({
  id: 'qa-engineer',
  name: 'quality-assurance',
  model: 'gpt-3.5-turbo',
  role: 'Write tests and ensure code quality',
  tools: ['test_generator', 'coverage_analyzer', 'security_scanner']
});

// Define workflow coordination
featureWorkflow.setCoordination({
  type: 'sequential_with_feedback',
  steps: [
    {
      agent: 'architect',
      output: ['api_spec', 'database_schema', 'component_hierarchy']
    },
    {
      agents: ['frontend-dev', 'backend-dev'],
      parallel: true,
      input: 'architect.output',
      output: ['components', 'api_endpoints']
    },
    {
      agent: 'qa-engineer',
      input: ['frontend-dev.output', 'backend-dev.output'],
      output: ['tests', 'coverage_report', 'security_report']
    }
  ],
  reviewCycles: 2,
  qualityThreshold: 0.95
});

// Execute the workflow
const feature = await featureWorkflow.execute({
  requirement: "User profile management system with avatar upload",
  context: {
    techStack: {
      frontend: 'React + TypeScript',
      backend: 'Node.js + Express',
      database: 'PostgreSQL',
      storage: 'AWS S3'
    },
    constraints: {
      responseTime: '<200ms',
      fileSize: '<5MB',
      accessibility: 'WCAG 2.1 AA'
    }
  }
});

// Monitor progress
featureWorkflow.on('agent:start', (data) => {
  console.log(`Agent ${data.agentId} started: ${data.task}`);
});

featureWorkflow.on('agent:thinking', (data) => {
  console.log(`${data.agentId} thinking: ${data.thought}`);
});

featureWorkflow.on('agent:complete', (data) => {
  console.log(`Agent ${data.agentId} completed with ${data.artifacts.length} artifacts`);
});

Inter-Agent Communication

Agents need to communicate and share information. Implement messaging protocols for efficient collaboration between agents.

agent-communication.js
// Agent Communication Protocol
class AgentMessaging {
  constructor() {
    this.messageQueue = new Map();
    this.agents = new Map();
  }

  // Register an agent
  registerAgent(agent) {
    this.agents.set(agent.id, agent);
    
    // Set up message handlers
    agent.on('message', (msg) => this.handleMessage(agent.id, msg));
    agent.on('request', (req) => this.handleRequest(agent.id, req));
    agent.on('broadcast', (data) => this.handleBroadcast(agent.id, data));
  }

  // Direct agent-to-agent communication
  async sendMessage(fromAgent, toAgent, message) {
    const msg = {
      id: this.generateMessageId(),
      from: fromAgent,
      to: toAgent,
      content: message,
      timestamp: Date.now()
    };

    // Route message
    const recipient = this.agents.get(toAgent);
    if (recipient) {
      const response = await recipient.receiveMessage(msg);
      return response;
    }
    
    throw new Error(`Agent ${toAgent} not found`);
  }

  // Broadcast to all agents
  broadcast(fromAgent, message) {
    this.agents.forEach((agent, id) => {
      if (id !== fromAgent) {
        agent.receiveMessage({
          from: fromAgent,
          content: message,
          type: 'broadcast'
        });
      }
    });
  }

  // Request-response pattern
  async request(fromAgent, toAgent, query) {
    const request = {
      id: this.generateRequestId(),
      from: fromAgent,
      query,
      timestamp: Date.now()
    };

    const recipient = this.agents.get(toAgent);
    if (recipient) {
      const response = await recipient.processRequest(request);
      return {
        request,
        response,
        latency: Date.now() - request.timestamp
      };
    }
  }
}

// Example: Agents collaborating on code review
const messaging = new AgentMessaging();

messaging.registerAgent(codeGeneratorAgent);
messaging.registerAgent(codeReviewerAgent);
messaging.registerAgent(securityAuditorAgent);

// Code generator requests review
const reviewRequest = await messaging.request(
  'code-generator',
  'code-reviewer',
  {
    type: 'review_code',
    code: generatedCode,
    context: 'User authentication module'
  }
);

// Reviewer broadcasts concerns to security auditor
if (reviewRequest.response.securityConcerns) {
  messaging.broadcast('code-reviewer', {
    type: 'security_alert',
    concerns: reviewRequest.response.securityConcerns,
    priority: 'high'
  });
}

Communication Patterns

  • Direct Messaging: Point-to-point communication
  • Broadcasting: One-to-many updates
  • Request-Response: Query and answer
  • Pub-Sub: Event-driven messaging
  • Shared Memory: Common context pool

Best Practices

  • • Use structured message formats
  • • Implement message acknowledgments
  • • Handle communication failures gracefully
  • • Log all agent interactions
  • • Monitor message latency

Creating Custom Agents

Build specialized agents for domain-specific tasks. Extend the base agent class with custom tools, behaviors, and optimization strategies.

custom-agent.js
// Creating a Custom Specialized Agent
class BlockchainAgent extends MCPAgent {
  constructor(config) {
    super({
      ...config,
      name: 'blockchain-specialist',
      model: 'gpt-4',
      specialization: 'blockchain'
    });

    this.setupBlockchainTools();
  }

  setupBlockchainTools() {
    this.addTool('deploy_contract', async (params) => {
      // Deploy smart contract logic
      const contract = await this.compileContract(params.code);
      const deployed = await this.deployToNetwork(contract, params.network);
      return { address: deployed.address, txHash: deployed.transactionHash };
    });

    this.addTool('audit_contract', async (params) => {
      // Security audit logic
      const vulnerabilities = await this.scanForVulnerabilities(params.code);
      const gasOptimizations = await this.analyzeGasUsage(params.code);
      return { vulnerabilities, gasOptimizations };
    });

    this.addTool('generate_tests', async (params) => {
      // Generate comprehensive tests
      const unitTests = await this.generateUnitTests(params.contract);
      const integrationTests = await this.generateIntegrationTests(params.contract);
      return { unitTests, integrationTests };
    });
  }

  async generateSmartContract(requirements) {
    const prompt = this.buildPrompt(requirements);
    
    const result = await this.execute({
      prompt,
      tools: ['deploy_contract', 'audit_contract', 'generate_tests'],
      context: {
        network: requirements.network || 'ethereum',
        standards: requirements.standards || ['ERC-20', 'ERC-721'],
        security: requirements.security || 'high'
      }
    });

    // Post-process for blockchain specifics
    result.code = this.optimizeForGas(result.code);
    result.audit = await this.tools.audit_contract({ code: result.code });
    
    return result;
  }

  optimizeForGas(code) {
    // Gas optimization logic
    return code.replace(/memory/g, 'calldata')
               .replace(/public/g, 'external');
  }
}

// Use the custom agent
const blockchainAgent = new BlockchainAgent({
  apiKey: process.env.MCP_API_KEY
});

const contract = await blockchainAgent.generateSmartContract({
  type: 'NFT',
  features: ['minting', 'burning', 'royalties'],
  network: 'ethereum',
  security: 'maximum'
});

Agent Performance Optimization

Optimization Strategies

  • Context Caching: Reuse context across agent calls to reduce processing time
  • Parallel Execution: Run independent agents simultaneously
  • Model Selection: Choose appropriate models for task complexity
  • Result Caching: Cache common patterns and solutions

Monitoring Metrics

  • Response Time: Track agent processing latency
  • Token Usage: Monitor and optimize token consumption
  • Success Rate: Measure task completion accuracy
  • Resource Usage: Track memory and CPU utilization

Next Steps

Building Complex Agent Systems?

Get expert guidance on designing and implementing sophisticated multi-agent architectures.